1: Numbering Systems and Conversions -NOTES

TOPIC 1: Numbering Systems

In digital control systems we will need to understand the ways in which these systems represent numbers. We traditionally use the decimal numbering system but computers use binary and when we program and try to understand what the computing system is doing we use hexadecimal and octal systems. The systems work the same but use a different number of characters to represent numbers.

Decimal Numbering System (base 10)

Octal Numbering System (base 8)

Characters =
$$0,1,2,3,4,5,6,7$$

written 437_{\circ} or 437_{\circ}

Binary Numbering System (base 2)

$$\frac{1}{8' \text{ s place}} \frac{1}{4' \text{ s place}} \frac{1}{2' \text{ s place}} = 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$$
written 1101_b or 1101_2

Hexadecimal Numbering System (base 16)

Characters = 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

$$E_{256's \, place} = 4 C_{16's \, place} = 14x256 + 4x16 + 12x1$$
written E4C_h or E4C₁₆

Binary (base 2) to Decimal (base 10) Example: Start with 1010110,

Start with the binary number. Below each bit, write the powers of two in increasing order from right to left. Calculate the powers of two and multiply down then add across.

Octal (base 8) to Decimal (base 10) Example: Start with 864₈

8 6 4 64 8 1 Start with the octal number. Below each digit, write the powers of eight in increasing order from right to left. Calculate the powers of eight and multiply down then add across.

$$(8x64)+(6x8)+(4x1) = 564_{10}$$

Hexadecimal (base 16) to Decimal (base 10) Example: Start with AC5 16

	Α	C	5	Start with the hex
A=10	16 ² 16 ¹ 16 ⁰		160	number. Below each digit,
B=11	10 10 10			write the powers of 16 in
C=12				increasing order from right
D=13	10	12	5	to left. Calculate the
E=14 F=15	256			powers of 16 and multiply
1-25	230	10		down then add across.

$$(10x256)+(12x16)+(5x1) = 2757_{10}$$

Decimal (base 10) to Binary (base 2)

Example: Start with 46₁₀

$$\frac{46}{2} = 23 \text{ R0} \qquad \frac{23}{2} = 11 \text{ R1}$$

$$\frac{11}{2} = 5 \text{ R1} \qquad \frac{5}{2} = 2 \text{ R1}$$

$$\frac{2}{2} = 1 \text{ R0} \qquad \frac{1}{2} = 0 \text{ R1}$$

Concatenate the remainders and the result is 101110

Therefore
$$46_{10} = 101110_{2}$$

Decimal (base 10) to Octal (base 8)

Example: Start with 964₁₀

$$\frac{964}{8} = 120 \text{ R4}$$
 $\frac{120}{8} = 15 \text{ R0}$ $\frac{15}{8} = 1R7$ $\frac{1}{8} = 0R1$

Concatenate the remainders and the result is 1704 Therefore $964_{10} = 1704_8$

Decimal (base 10) to Hexadecimal (base 16) Example: Start with 8294₁₀

$$\frac{8294}{16} = 518 \,\text{R6} \qquad \frac{518}{16} = 32 \,\text{R6}$$
$$\frac{32}{16} = 2 \,\text{R0} \qquad \frac{2}{16} = 0 \,\text{R} \, 2$$

Concatenate the remainders and the result is 2066

Therefore
$$8294_{10} = 2066_{16}$$

Hexadecimal (base 16) to Binary (base 2) and reverse Example: Start with CE45 16

C E 4 5 1100 1110 0100 0101 1100111001000101,

Example: Start with 010111110000101₂
(0)010 1111 1000 0101
2 F 8 5
2F85₁₆

Octal (base 8) to Binary (base 2) and reverse Example: Start with 3742₈

3 7 4 2 011 111 100 010 011111100010₂

Example: Start with 10010011111101,

(0)10 010 011 111 101 2 2 3 7 5 22375₈

Octal to Hexadecimal and reverse Example: Start with 3756₈

3 7 5 6₈ 011 111 101 110 0111 1110 1110 7 E E₁₆ Convert the octal to binary then convert the binary to hex. The reverse is just the opposite procedure.