1: Numbering Systems and Conversions -NOTES

TOPIC 1: Numbering Systems

In digital control systems we will need to understand the ways in which these systems represent numbers. We traditionally use the decimal numbering system but computers use binary and when we program and try to understand what the computing system is doing we use hexadecimal and octal systems. The systems work the same but use a different number of characters to represent numbers.

Decimal Numbering System (base 10)

Characters $=0,1,2,3,4,5,6,7,8,9$

Octal Numbering System (base 8)

$$
\text { Characters }=0,1,2,3,4,5,6,7
$$

$$
437=4 \times 64+3 \times 8+7 \times 1
$$

64 's place 8 's place 1 's place
written 437 。or 4378
Binary Numbering System (base 2)

$$
\text { Characters }=0 \text { and } 1
$$

$1101=1 \times 8+1 \times 4+0 \times 2+1 \times 1$
 8'splace 4's place 2 's place 1's place

$$
\text { written } 1101_{\mathrm{b}} \text { or } 1101_{2}
$$

Hexadecimal Numbering System (base 16)
Characters $=0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$

$$
\underset{\text { 256'splace }}{\mathrm{E}} \underset{\text { 16splace }}{\boldsymbol{C}} \underset{\text { 1'splace }}{\mathrm{C}}=14 \times 256+4 \times 16+12 \times 1
$$

Binary (base 2) to Decimal (base 10)

Example: Start with 1010110_{2}

$$
\begin{array}{llllllll}
1 & 0 & 1 & 0 & 1 & 1 & 0 & \begin{array}{l}
\text { Start with the binary } \\
2^{6}
\end{array} 2^{5}
\end{array} 2^{4} 2^{3} 2^{2} 2^{1} \quad 2^{0} \begin{aligned}
& \text { number. Below each bit, } \\
& \text { write the powers of two in } \\
& \text { increasing order from right } \\
& \text { to left. Calculate the }
\end{aligned}
$$

$$
64+0+16+0+4+2+0=86
$$

Octal (base 8) to Decimal (base 10)

Example: Start with 864_{8}

8	6	4	Start with the octal 8^{2}
8^{1}	8^{0}	number. Below each digit, write the powers of eight in increasing order from right	
8	6	4	to left. Calculate the powers of eight and multiply down then add across.
64	8	1	

$(8 \times 64)+(6 \times 8)+(4 \times 1)=564_{10}$

Hexadecimal (base 16) to Decimal (base 10)
Example: Start with AC5 ${ }_{16}$

A C 5 Start with the hex

$\mathrm{A}=10$
$B=11$
$\mathrm{C}=12$
$\mathrm{D}=13$
$\mathrm{E}=14$
$\mathrm{F}=15$
$16^{2} 16^{1} 16^{0}$ number. Below each digit, write the powers of 16 in increasing order from right
$\begin{array}{lll}10 & 12 & 5\end{array}$ to left. Calculate the powers of 16 and multiply down then add across.
$(10 \times 256)+(12 \times 16)+(5 \times 1)=2757_{10}$

Decimal (base 10) to Binary (base 2)
Example: Start with 46_{10}

$$
\begin{aligned}
\frac{46}{2} & =23 \mathrm{R} 0 & \frac{23}{2} & =11 \mathrm{R} 1 \\
\frac{11}{2} & =5 \mathrm{R} 1 & \frac{5}{2} & =2 \mathrm{R} 1 \\
\frac{2}{2} & =1 \mathrm{R} 0 & \frac{1}{2} & =0 \mathrm{R} 1
\end{aligned}
$$

Concatenate the remainders and the result is 101110
Therefore $46_{10}=101110_{2}$

Decimal (base 10) to Octal (base 8)
Example: Start with 964_{10}

$$
\begin{array}{ll}
\frac{964}{8}=120 \mathrm{R} 4 & \frac{120}{8}=15 \mathrm{R} 0 \\
\frac{15}{8}=1 \mathrm{R} 7 & \frac{1}{8}=0 \mathrm{R} 1
\end{array}
$$

Concatenate the remainders and the result is 1704 Therefore $964_{10}=1704_{8}$

Decimal (base 10) to Hexadecimal (base 16)
Example: Start with 8294_{10}

$$
\begin{array}{ll}
\frac{8294}{16}=518 \mathrm{R} 6 & \frac{518}{16}=32 \mathrm{R} 6 \\
\frac{32}{16}=2 \text { R } 0 & \frac{2}{16}=0 \mathrm{R} 2
\end{array}
$$

Concatenate the remainders and the result is 2066
Therefore $8294_{10}=2066_{16}$

Hexadecimal (base 16) to Binary (base 2) and reverse Example: Start with CE45 16

C	E	4	5
1100	1110	0100	0101
	1100111001000101_{2}		

Example: Start with 010111110000101_{2} (0)010 111110000101

$2 \quad$| 2 | 8 | 5 |
| :--- | :--- | :--- |
| | $2 \mathrm{~F} 85_{16}$ | |

Octal (base 8) to Binary (base 2) and reverse
Example: Start with 3742_{8}

$$
\begin{array}{cccc}
3 & 7 & 4 & 2 \\
011 & 111 & 100 & 010 \\
& 011111100010_{2}
\end{array}
$$

Example: Start with 10010011111101_{2}
(0)10 $010 \quad 011111101$
$\begin{array}{lllll}2 & 2 & 3 & 7 & 5\end{array}$
223758

Octal to Hexadecimal and reverse Example: Start with 3756_{8}

3	75	68	
011	111101	110	binary then convert the
0111	1110	1110	
7	E	E_{16}	

